
Refinement Checking for Libraries of
Concurrents Objects

Ahmed Bouajjani
LIAFA, Univ Paris Diderot - Paris 7

Joint work with

Michael Emmi Constantin Enea Jad Hamza

PV, Madrid, September 5, 2015

IMDEA LIAFA, U Paris Diderot - P7

Concurrent Data Structures

Push(0) Push(1)
Pop(1) Pop(0)

Push Pop Empty

Empty(true)

…T1 Tn

Low Level Representation

Methods
Implementation

Different atomicity levels

Client view:
- Operations are atomic
- Thread executions are interleaved

- Naive solution: Coarse-grain locking
- Performances: Avoid coarse-grain locking
- => Execution intervals may overlap

Implementation:

Push(1) Pop(0)Push(0) Pop(1) Empty(true)

Push(0)

Push(1) Pop(0)

Pop(1)

Empty(true)

Observational Refinement

Client Client

For every Client,
Client x Impl included in Client x Spec

Implementation Specification:
Atomic Operations

 Linearizability

Push(1)

Push(0)

Pop(0)

• Reorder call/return events, while preserving returns —> calls
• Find “linearization points” within execution time intervals
• => match a sequential execution

Push(0)Push(1) Pop(0)
Valid sequence in the sequential specification

Linearizability implies Observational Refinement
[Filipovic, O’Hearn, Rinetzky, Yang, 2009]

[Herlihy, Wing, 1990]

Complexity

• Checking linearizability of a single execution is NP-complete
[Gibbons, Korach, 1997]

• For finite-state implementations and specifications:

Linearizability State Reachability

Fixed Nb Threads

Unbounded
Nb of Threads

EXPSPACE-complete (1)

EXPSPACE-complete

PSPACE-complete

Undecidable (2)

(1)Upper Bound: Alur, McMillan, Peled 1996 — Lower Bound: Hamza 2015
(2)B., Emmi, Enea, Hamza, 2013

Reducing Linearizability/OR to State Reachability?

• Reuse existing tools for SR
• Lower complexity
• Decidability

Why?

Two approaches:
• Under approximations: special classes of executions

• Special classes of objects:

• Parametrized under-approximation schema?
• Good coverage, low complexity, scalability

Stacks, queues, etc.

Under-approximate detection of OR violations ?

• Use counting representations
• => Correctness of a single history is Polynomial time
• => Scalable dynamic and static analysis techniques

[B, Emmi, Enea, Hamza, POPL’15]

• “Histories” are a special partial orders: Interval orders
• => Interval-length bounding

Characterizing OR as a History Inclusion Problem

Efficient Reduction to Reachability

• ≤ 3
• Cut-off bounds for common data structures

Good coverage with small bounds

Histories
History of an execution e :

O1 < O2 iff Return(O1) is before Call(O2) in e

H(e) = (O, label, <)
where

• O = Operations(e)
• label: O —> M x V x V
• < is a partial order s.t.

c(push,1) r(push,tt) c(pop,-) c(pop,-) r(pop,1) c(push,2) r(push,tt) r(pop,2)

push(1)
pop(2)

pop(1) push(2)

Abstracting Histories

h1 ≤ h2 (h1 is weaker than h2)
iff

h1 has less constraints than h2

If h1 ≤ h2 and h2 is in H(L), then h1 is in H(L) too
Lemma:

Weakening relation

Approximation Schema for detecting OR violations

Parametrized weakening function Ak, for any k≥0, s.t.

• Ak(h) ≤ h
• A0(h) ≤ A1(h) ≤ A2(h) ≤ … ≤ h
• There is a k s.t. h ≤ Ak(h)
• Checking if Ak(h) is in H(L) decidable in polynomial time

Approximation Schema for detecting OR violations

Parametrized weakening function Ak, for any k≥0, s.t.

• Ak(h) ≤ h
• A0(h) ≤ A1(h) ≤ A2(h) ≤ … ≤ h
• There is a k s.t. h ≤ Ak(h)
• Checking if Ak(h) is in H(L) decidable in polynomial time

• Choose a parameter k≥0
• Is there an h in H(L1) s.t. Ak(h) is not in H(L2) ?
• Lemma => If Ak(h) not in H(L2), then h is not in H(L2)

Approximating History Inclusion

Prop: For every execution e, H(e) is an interval order

Interval Orders = partial order (O, <) such that
(o1 < o1’ and o2 < o2’) implies (o1 < o2’ or o2 < o1’)

Histories are Interval Orders

A Bounding Concept for Histories

Let h = (O,<) be an Interval Order (history in our case)

• Past of an operation: past(o) = {o’ : o’ < o}
• Lemma [Rabinovitch’78]:
 The set {past(o) : o in O} is linearly ordered

• The length of the order = number of pasts - 1

Notion of length:

A Bounding Concept for Histories

Let h = (O,<) be an Interval Order (history in our case)

• Past of an operation: past(o) = {o’ : o’ < o}
• Lemma [Rabinovitch’78]:
 The set {past(o) : o in O} is linearly ordered

• The length of the order = number of pasts - 1

Notion of length:

Ak maps each h to some h’ ≤ h of length k
Bounded interval-length approximation

=> Ak keeps precise the information (bounds)
about the k last intervals

• Mapping I : O —> [n]2 where n = length(h) [Greenough ’76]
• I(o) = [i, j], with i, j ≤ n, such that

i = |{past(o’) : o’ < o}| and
j = |{past(o’) : not (o < o’)}| - 1

Canonical Representation of Interval Orders

push(1)

pop(1) push(2) push(3)

pop(3)

pop(2)

I(push(1)) = [0, 0]
I(pop(1)) = [1, 1]
I(push(2)) = [2, 2]
I(push(3) = [3, 3]
I(pop(3)) = [1, 3]
I(pop(2)) = [4, 4]

0 1 2 3 4

Counting Representation of Interval Orders

Count the number of occurrences
of each operation in each interval

• h = (O, <) an IO with canonical representation I:O—>[n]2
• Then, let ∏(h) be the multi-set { [label(o), I(o)] : o in O }
• Use a counter per type of operation and interval

Prop: H(e) is in H(L) iff ∏(H(e)) is in ∏(H(L))

Reduction to Reachability with Counters

H(L1) subset of H(L2)
iff

∏(H(L1)) subset of ∏(H(L2))

• Consider only k-bounded-length histories
• Track histories of L1 using a finite number of counters
• Use an arithmetic-based representation of ∏(H(L2))
• Check that ∏(H(L2)) is invariant

• => Dynamic and static analysis

Reduction to Reachability with Counters

H(L1) subset of H(L2)
iff

∏(H(L1)) subset of ∏(H(L2))

• Consider only k-bounded-length histories
• Track histories of L1 using a finite number of counters
• Use an arithmetic-based representation of ∏(H(L2))
• Check that ∏(H(L2)) is invariant

• => Dynamic and static analysis

How to get ∏(H(L)) ?

• Logic for expressing operation counting constraints

Operation counting formulas

Presburger arithmetics with #(a, i, j) predicates
where

[#(a, i, j)](h) = |{o : I(o) = [i,j] and label(o) = a}|
Number of occurrences of a in the interval [i,j]

• h |= F is polynomial time (for a fixed quantifier count)

Building operation counting formulas

• For any k, a counting formula for ∏(H(L)) can be provided
for common data structures (stack, queue, set,…)

• Assume data independence => push’s have ≠ values

Violation of FIFO property (FV):
x1,x2,y1,y2.

Match(x1, y1) & Match(x2,y2)
BeforeK(x1,x2) & BeforeK(y2, y1)

where
Match(x,y) = IsPush(x) & IsPop(y) & SameVal(x,y)

BeforeK(x,y) = \/i≤k (count(x,0,i) > 0) & count(y,0,i)=0 & count(x,i+1,k)=0)
where

count(x,i,j) = ∑i≤i’≤j’≤j #(x,i’,j’)

9

Building operation counting formulas

FIFO queue data structure:

Violation of FIFO property (FV):
x1,x2,y1,y2. Match(x1, y1) & Match(x2,y2) &

BeforeK(x1,x2) & BeforeK(y2, y1)

Violation of Remove property (RV):

Violation of Empty property (EV):

x,y. Match(x, y) & BeforeK(y, x)

x,y,z. Match(x, z) & EmptyPop(y) &
BeforeK(y, z) & BeforeK(y, z)

9

9

9

Experimental Results: Coverage

 1

 10

 100

 1000

 10000

 100000
Histoires

Violations
Covered w/ k=4
Covered w/ k=3
Covered w/ k=2
Covered w/ k=1
Covered w/ k=0

• Data point: Counts in logarithmic scale over all executions (up to 5 preemptions) on
Scal’s nonblocking bounded-reordering queue with ≤4 enqueue and ≤4 dequeue

• x-axis: increasing number of executions (1023-2359292)
• White: total number of unique histories over a given set of executions
• Black: violations detected by traditional linearizability checker (e.g., Line-up)

Comparison of violations covered with k ≤ 4

Experimental Results: Runtime Monitoring

 1

 10

 100

 1000
Linearization

Operation Counting

Comparison of runtime overhead
between Linearization-based monitoring and Operation counting

• Data point: runtime on logarithmic scale, normalised on unmonitored execution time
• Scal’s nonblocking Michael-Scott queue, 10 enqueue and 10 dequeue operations.
• x-axis is ordered by increasing number of operations

Experimental Results: Static Analysis

Library Bug P k m n Time
Michael-Scott Queue B1 (head) 2x2 1 2 2 24.76s
Michael-Scott Queue B1 (tail) 3x1 1 2 3 45.44s
Treiber Stack B2 3x4 1 1 2 52.59s
Treiber Stack B3 (push) 2x2 1 1 2 24.46s
Treiber Stack B3 (pop) 2x2 1 1 2 15.16s
Elimination Stack B4 4x1 0 1 4 317.79s
Elimination Stack B5 3x1 1 1 4 222.04s
Elimination Stack B2 3x4 0 1 2 434.84s
Lock-coupling Set B6 1x2 0 2 2 11.27s
LFDS Queue B7 2x2 1 1 2 77.00s

• Static detection of injected refinement violations with CSeq & CBMC.
• Program Pij with i and j invocations to the push and pop methods, explore n-round

round-robin schedules with m loop iterations unrolled, with monitor for Ak.
• Bugs: (B1) non-atomic lock, (B2) ABA bug, (B3) non-atomic CAS operation, (B4)

misplaced brace, (B5) forgotten assignment, (B6) misplaced

Focusing on Special Classes of Objects
[B., Emmi, Enea, Hamza, ICALP 2015]

• Inductive definition of sequential objects (restricted
language based on constrained rewrite rules)

• Characterizing concurrent violations using a finite
number of “bad patterns”

• Defining finite-state automata recognising each of the
“bad patterns” (using data independence assumption)

• Reducing linearizability to checking the emptiness of the
intersection with these automata.

Specifying queues and stacks

• u . v : Q & u : ENQ* —> Enq(x) . u . Deq(x) . v : Q

• u . v : Q & no unmatched Enq in u —> u . Emp . v : Q

• u . v : S & no unmatched Push in u —>
Push(x) . u . Pop(x) . v : S

• u . v : S & no unmatched Push in u —>
u . Emp . v : S

Queue

Stack

Order Violation

Enq(1)

Deq(1)Enq(2)

Deq(2)

Enq(1) < Enq(2) & Deq(2) < Deq(1)

Empty ViolationIntroduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

EMP

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0 q1 q2

q3

q4

⌃2 ⌃2 ⌃2

⌃2

⌃2

call Push(1)

ret Push(1) call EMP() ret EMP()

ret Push(1)call Pop(1)

14 / 17

Order Violation cont.Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

Push2 Pop2

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0q

i

q1 q2

q3

q4

⌃3 ⌃3 ⌃3 ⌃3

⌃3

⌃3

call Push(1)

call Push(2)·
ret Push(2) ret Push(1) call Pop(2) ret Pop(2)

ret Push(1)call Pop(1)

15 / 17

Automaton for Empty Violation
Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

EMP

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0 q1 q2

q3

q4

⌃2 ⌃2 ⌃2

⌃2

⌃2

call Push(1)

ret Push(1) call EMP() ret EMP()

ret Push(1)call Pop(1)

14 / 17

Automaton for Push-Pop Order Violation
Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

Push2 Pop2

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0q

i

q1 q2

q3

q4

⌃3 ⌃3 ⌃3 ⌃3

⌃3

⌃3

call Push(1)

call Push(2)·
ret Push(2) ret Push(1) call Pop(2) ret Pop(2)

ret Push(1)call Pop(1)

15 / 17

Linearizability to State Reachability

For each S in {Stack, Queue, Mutex, Register}, there is an automaton
A(S) s.t. for every data independent concurrent object C, C is
linearisable wrt S iff the intersection of H(C) wrt H(A(S)) is empty.

Thm:

Same complexity as state reachability

Conclusion/Future work

• Bounding concept based on the notion of interval-length
• OR checking —> Reachability problem, using counting
• Suitable bounding concept: low complexity, small bounds
• Application in Dynamic and Static Analysis
• => Automatic synthesis of “specification”

• Reduction to SR for a common concurrent objects
• Reuse of existing verification technology
• => Extension to other kind of objects, e.g., sets
• => Abstractions / under-approximate analysis

