Refinement Checking for Libraries of Concurrents Objects

Ahmed Bouajjani LIAFA, Univ Paris Diderot - Paris 7

Joint work with

Michael Emmi IMDEA Constantin Enea Jad Hamza LIAFA, U Paris Diderot - P7

PV, Madrid, September 5, 2015

Different atomicity levels

Client view:

- Operations are atomic
- Thread executions are interleaved

Implementation:

- Naive solution: Coarse-grain locking
- Performances: Avoid coarse-grain locking
- => Execution intervals may overlap

Observational Refinement

For every Client, Client x Impl included in Client x Spec

- Reorder call/return events, while preserving returns —> calls
- Find "linearization points" within execution time intervals
- => match a sequential execution

Linearizability *implies* Observational Refinement [Filipovic, O'Hearn, Rinetzky, Yang, 2009]

Complexity

- Checking linearizability of a single execution is NP-complete
 [Gibbons, Korach, 1997]
- For finite-state implementations and specifications:

	Linearizability	State Reachability
Fixed Nb Threads	EXPSPACE-complete (1)	PSPACE-complete
Unbounded Nb of Threads	Undecidable (2)	EXPSPACE-complete

(1)Upper Bound: Alur, McMillan, Peled 1996 — Lower Bound: Hamza 2015 (2)B., Emmi, Enea, Hamza, 2013

Reducing Linearizability/OR to State Reachability?

Why?

- Reuse existing tools for SR
- Lower complexity
- Decidability

Two approaches:

- Under approximations: special classes of executions
 - Parametrized under-approximation schema?
 - Good coverage, low complexity, scalability
- Special classes of objects:

Stacks, queues, etc.

Under-approximate detection of OR violations ? [B, Emmi, Enea, Hamza, POPL'15]

Characterizing OR as a History Inclusion Problem

- "Histories" are a special partial orders: Interval orders
- => Interval-length bounding

Efficient Reduction to Reachability

- Use counting representations
- => Correctness of a single history is Polynomial time
- => Scalable dynamic and static analysis techniques

Good coverage with small bounds

- ≤ 3
- Cut-off bounds for common data structures

Histories

History of an execution *e* :

H(e) = (O, label, <)

where

- O = Operations(e)
- label: $O \longrightarrow M \times V \times V$
- < is a partial order s.t.
- O1 < O2 iff Return(O1) is before Call(O2) in e

c(push,1) r(push,tt) c(pop,-) c(pop,-) r(pop,1) c(push,2) r(push,tt) r(pop,2)

Abstracting Histories

Weakening relation

$h_1 \le h_2$ (h_1 is weaker than h_2) iff h_1 has less constraints than h_2

Lemma: If $h_1 \le h_2$ and h_2 is in H(L), then h_1 is in H(L) too Approximation Schema for detecting OR violations

Parametrized weakening function A_k , for any k ≥ 0 , s.t.

- $A_k(h) \le h$
- $A_0(h) \le A_1(h) \le A_2(h) \le \ldots \le h$
- There is a k s.t. $h \leq A_k(h)$
- Checking if $A_k(h)$ is in H(L) decidable in polynomial time

Approximation Schema for detecting OR violations

Parametrized weakening function A_k , for any k ≥ 0 , s.t.

- $A_k(h) \le h$
- $A_0(h) \le A_1(h) \le A_2(h) \le \ldots \le h$
- There is a k s.t. $h \le A_k(h)$
- Checking if $A_k(h)$ is in H(L) decidable in polynomial time

Approximating History Inclusion

- Choose a parameter $k \ge 0$
- Is there an h in $H(L_1)$ s.t. $A_k(h)$ is not in $H(L_2)$?
- Lemma => If $A_k(h)$ not in $H(L_2)$, then h is not in $H(L_2)$

Histories are Interval Orders

Interval Orders = partial order (O, <) such that

(01 < 01' and 02 < 02') implies (01 < 02' or 02 < 01')

Prop: For every execution e, H(e) is an interval order

A Bounding Concept for Histories

Let h = (O, <) be an Interval Order (history in our case)

Notion of length:

- Past of an operation: past(o) = {o' : o' < o}
- Lemma [Rabinovitch'78]: The set {past(o) : o in O} is linearly ordered
- The *length* of the order = number of pasts 1

A Bounding Concept for Histories

Let h = (O, <) be an Interval Order (history in our case)

Notion of length:

- Past of an operation: past(o) = {o' : o' < o}
- Lemma [Rabinovitch'78]: The set {past(o) : o in O} is linearly ordered
- The *length* of the order = number of pasts 1

Bounded interval-length approximation A_k maps each h to some h' \leq h of length k

=> A_k keeps precise the information (bounds) about the k last intervals

Canonical Representation of Interval Orders

- Mapping I : O —> $[n]^2$ where n = length(h) [Greenough '76]
- I(o) = [i, j], with i, $j \le n$, such that

 $i = |\{past(o') : o' < o\}|$ and $j = |\{past(o') : not (o < o')\}| - 1$

I(push(1)) = [0, 0] I(pop(1)) = [1, 1] I(push(2)) = [2, 2] I(push(3) = [3, 3] I(pop(3)) = [1, 3]I(pop(2)) = [4, 4] Counting Representation of Interval Orders

Count the number of occurrences of each operation in each interval

- h = (O, <) an IO with canonical representation I:O—>[n]²
- Then, let ∏(h) be the multi-set { [label(o), l(o)] : o in O }
- Use a counter per type of operation and interval

Prop: H(e) is in H(L) iff $\Pi(H(e))$ is in $\Pi(H(L))$

Reduction to Reachability with Counters

H(L₁) subset of H(L₂) iff $\Pi(H(L_1))$ subset of $\Pi(H(L_2))$

- Consider only k-bounded-length histories
- Track histories of L_1 using a finite number of counters
- Use an arithmetic-based representation of $\Pi(H(L_2))$
- Check that $\Pi(H(L_2))$ is invariant
- => Dynamic and static analysis

Reduction to Reachability with Counters

H(L₁) subset of H(L₂) iff $\Pi(H(L_1))$ subset of $\Pi(H(L_2))$

- Consider only k-bounded-length histories
- Track histories of L_1 using a finite number of counters
- Use an arithmetic-based representation of $\Pi(H(L_2))$
- Check that $\Pi(H(L_2))$ is invariant
- => Dynamic and static analysis

How to get $\Pi(H(L))$?

Operation counting formulas

Logic for expressing operation counting constraints

Presburger arithmetics with #(a, i, j) predicates where

 $[#(a, i, j)](h) = |\{o : I(o) = [i,j] and label(o) = a\}|$ Number of occurrences of a in the interval [i,j]

• h |= F is polynomial time (for a fixed quantifier count)

Building operation counting formulas

- For any k, a counting formula for ∏(H(L)) can be provided for common data structures (stack, queue, set,...)
- Assume data independence => push's have ≠ values

Violation of FIFO property (FV):

 $\exists x1, x2, y1, y2.$ Match(x1, y1) & Match(x2, y2) Before_K(x1, x2) & Before_K(y2, y1) where Match(x,y) = IsPush(x) & IsPop(y) & SameVal(x,y) Before_K(x,y) = $\bigvee_{i \le k} (count(x,0,i) > 0) & count(y,0,i)=0 & count(x,i+1,k)=0)$ where $count(x,i,j) = \sum_{i \le i' \le j' \le j} \#(x,i',j')$

Building operation counting formulas

FIFO queue data structure:

Violation of FIFO property (FV): ∃ x1,x2,y1,y2. Match(x1, y1) & Match(x2,y2) & Before_K(x1,x2) & Before_K(y2, y1)

Violation of Remove property (RV): $\exists x, y. Match(x, y) \& Before_{K}(y, x)$

Violation of Empty property (EV):

 $\exists x,y,z. Match(x, z) \& EmptyPop(y) \& Before_{K}(y, z) \& Before_{K}(y, z)$

Experimental Results: Coverage

Comparison of violations covered with $k \leq 4$

- Data point: Counts in logarithmic scale over all executions (up to 5 preemptions) on Scal's nonblocking bounded-reordering queue with ≤4 enqueue and ≤4 dequeue
- x-axis: increasing number of executions (1023-2359292)
- White: total number of unique histories over a given set of executions
- Black: violations detected by traditional linearizability checker (e.g., Line-up)

Experimental Results: Runtime Monitoring

Comparison of runtime overhead between Linearization-based monitoring and Operation counting

- Data point: runtime on logarithmic scale, normalised on unmonitored execution time
- Scal's nonblocking Michael-Scott queue, 10 enqueue and 10 dequeue operations.
- x-axis is ordered by increasing number of operations

Experimental Results: Static Analysis

Library	Bug	Ρ	k	m	n	Time
Michael-Scott Queue	B1 (head)	2x2	1	2	2	24.76s
Michael-Scott Queue	B1 (tail)	3x1	1	2	3	45.44s
Treiber Stack	B2	3x4	1	1	2	52.59s
Treiber Stack	B3 (push)	2x2	1	1	2	24.46s
Treiber Stack	B3 (pop)	2x2	1	1	2	15.16s
Elimination Stack	B4	4x1	0	1	4	317.79s
Elimination Stack	B5	3x1	1	1	4	222.04s
Elimination Stack	B2	3x4	0	1	2	434.84s
Lock-coupling Set	B6	1x2	0	2	2	11.27s
LFDS Queue	B7	2x2	1	1	2	77.00s

- Static detection of injected refinement violations with CSeq & CBMC.
- Program Pij with i and j invocations to the push and pop methods, explore n-round round-robin schedules with m loop iterations unrolled, with monitor for Ak.
- Bugs: (B1) non-atomic lock, (B2) ABA bug, (B3) non-atomic CAS operation, (B4) misplaced brace, (B5) forgotten assignment, (B6) misplaced

Focusing on Special Classes of Objects [B., Emmi, Enea, Hamza, ICALP 2015]

- Inductive definition of sequential objects (restricted language based on constrained rewrite rules)
- Characterizing concurrent violations using a finite number of "bad patterns"
- Defining finite-state automata recognising each of the "bad patterns" (using data independence assumption)
- Reducing linearizability to checking the emptiness of the intersection with these automata.

Specifying queues and stacks

Queue

- u.v:Q & u:ENQ* -> Enq(x).u. Deq(x).v:Q
- u.v:Q & no unmatched *Enq* in u —> u.**Emp**.v:Q

Stack

- u.v:S & no unmatched *Push* in u —>
 Push(x).u.**Pop(x)**.v:S
- u.v:S & no unmatched *Push* in u —> u.Emp.v:S

Order Violation

Enq(1) < Enq(2) & Deq(2) < Deq(1)

Empty Violation

Order Violation cont.

Automaton for Empty Violation

Recognized by:

Automaton for Push-Pop Order Violation

Linearizability to State Reachability

Thm:

For each S in {Stack, Queue, Mutex, Register}, there is an automaton A(S) s.t. for every data independent concurrent object C, C is linearisable wrt S iff the intersection of H(C) wrt H(A(S)) is empty.

Same complexity as state reachability

Conclusion/Future work

- Bounding concept based on the notion of interval-length
- OR checking —> Reachability problem, using counting
- Suitable bounding concept: low complexity, small bounds
- Application in Dynamic and Static Analysis
- => Automatic synthesis of "specification"
- Reduction to SR for a common concurrent objects
- Reuse of existing verification technology
- => Extension to other kind of objects, e.g., sets
- => Abstractions / under-approximate analysis