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Concurrent Data Structures

Push(0) Push(1)
Pop(1) Pop(0)

Push Pop Empty

Empty(true)
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Methods 
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Different atomicity levels

Client view:
- Operations are atomic 
- Thread executions are interleaved

- Naive solution: Coarse-grain locking 
- Performances: Avoid coarse-grain locking 
- => Execution intervals may overlap

Implementation:

Push(1) Pop(0)Push(0) Pop(1) Empty(true)

Push(0)

Push(1) Pop(0)

Pop(1)

Empty(true)



Observational Refinement

Client Client

For every Client,  
Client x Impl included in Client x Spec 

Implementation Specification: 
Atomic Operations



         Linearizability

Push(1)

Push(0)

Pop(0)

• Reorder call/return events, while preserving returns —> calls 
• Find “linearization points” within execution time intervals 
• => match a sequential execution

Push(0)Push(1) Pop(0)
Valid sequence in the sequential specification

Linearizability implies Observational Refinement  
[Filipovic, O’Hearn, Rinetzky, Yang, 2009]

[Herlihy, Wing, 1990]



Complexity 

• Checking linearizability of a single execution is NP-complete 
[Gibbons, Korach, 1997]

• For finite-state implementations and specifications:

Linearizability State Reachability

Fixed Nb Threads

Unbounded  
Nb of Threads

EXPSPACE-complete (1)

EXPSPACE-complete

PSPACE-complete

Undecidable (2)

(1)Upper Bound: Alur, McMillan, Peled 1996 — Lower Bound: Hamza 2015 
(2)B., Emmi, Enea, Hamza, 2013



Reducing Linearizability/OR to State Reachability?

• Reuse existing tools for SR   
• Lower complexity 
• Decidability 

Why?

Two approaches:
• Under approximations: special classes of executions 

• Special classes of objects:  

• Parametrized under-approximation schema? 
• Good coverage, low complexity, scalability

Stacks, queues, etc.



Under-approximate detection of OR violations ?

• Use counting representations 
• => Correctness of a single history is Polynomial time 
• => Scalable dynamic and static analysis techniques

[B, Emmi, Enea, Hamza, POPL’15]

• “Histories” are a special partial orders: Interval orders 
• => Interval-length bounding 

Characterizing OR as a History Inclusion Problem

Efficient Reduction to Reachability 

• ≤ 3 
• Cut-off bounds for common data structures 

Good coverage with small bounds 



Histories
History of an execution e :  

O1 < O2   iff   Return(O1)  is before  Call(O2) in e 

H(e) = (O, label, <) 
where 

• O = Operations(e) 
• label: O —> M x V x V  
• < is a partial order s.t.

c(push,1) r(push,tt) c(pop,-) c(pop,-) r(pop,1) c(push,2) r(push,tt) r(pop,2) 

push(1)
pop(2)

pop(1) push(2)



Abstracting Histories

h1 ≤ h2  (h1 is weaker than h2)  
iff   

h1  has less constraints than  h2 

If h1 ≤ h2 and h2 is in H(L), then h1 is in H(L) too
Lemma:

Weakening relation



Approximation Schema for detecting OR violations

Parametrized weakening function Ak, for any k≥0,  s.t.

• Ak(h) ≤ h 
• A0(h) ≤ A1(h) ≤ A2(h) ≤ … ≤ h 
• There is a k s.t. h ≤ Ak(h) 
• Checking if Ak(h) is in H(L) decidable in polynomial time



Approximation Schema for detecting OR violations

Parametrized weakening function Ak, for any k≥0,  s.t.

• Ak(h) ≤ h 
• A0(h) ≤ A1(h) ≤ A2(h) ≤ … ≤ h 
• There is a k s.t. h ≤ Ak(h) 
• Checking if Ak(h) is in H(L) decidable in polynomial time

• Choose a parameter k≥0  
• Is there an h in H(L1) s.t. Ak(h) is not in H(L2) ? 
• Lemma => If Ak(h) not in H(L2), then h is not in H(L2)

Approximating History Inclusion



Prop: For every execution e, H(e) is an interval order

Interval Orders = partial order (O, <) such that
(o1 < o1’  and o2 < o2’)  implies  (o1 < o2’  or  o2 < o1’)

Histories are Interval Orders



A Bounding Concept for Histories

Let h = (O,<) be an Interval Order (history in our case) 

• Past of an operation: past(o) = {o’ : o’ < o} 
• Lemma [Rabinovitch’78]: 
  The set {past(o) : o in O} is linearly ordered 

• The length of the order = number of pasts - 1

Notion of length:



A Bounding Concept for Histories

Let h = (O,<) be an Interval Order (history in our case) 

• Past of an operation: past(o) = {o’ : o’ < o} 
• Lemma [Rabinovitch’78]: 
  The set {past(o) : o in O} is linearly ordered 

• The length of the order = number of pasts - 1

Notion of length:

Ak maps each h to some h’ ≤ h of length k
Bounded interval-length approximation

=> Ak keeps precise the information (bounds)  
about the k last intervals



• Mapping I : O —> [n]2 where n = length(h) [Greenough ’76] 
• I(o) = [i, j], with i, j ≤ n, such that

i = |{past(o’) : o’ < o}|  and   
j = |{past(o’) : not (o < o’)}| - 1 

Canonical Representation of Interval Orders

push(1)

pop(1) push(2) push(3)

pop(3)

pop(2)

I(push(1)) = [0, 0] 
I(pop(1)) = [1, 1] 
I(push(2)) = [2, 2]
I(push(3) = [3, 3] 
I(pop(3)) = [1, 3] 
I(pop(2)) = [4, 4]

0 1 2 3 4



Counting Representation of Interval Orders

Count the number of occurrences  
of each operation in each interval

• h = (O, <) an IO with canonical representation I:O—>[n]2 
• Then, let ∏(h) be the multi-set  { [label(o), I(o)] : o in O } 
• Use a counter per type of operation and interval

Prop:  H(e) is in H(L)  iff  ∏(H(e)) is in ∏(H(L)) 



Reduction to Reachability with Counters

H(L1) subset of H(L2)  
iff 

∏(H(L1)) subset of ∏(H(L2))

• Consider only k-bounded-length histories 
• Track histories of L1 using a finite number of counters 
• Use an arithmetic-based representation of  ∏(H(L2)) 
• Check that ∏(H(L2)) is invariant  

• => Dynamic and static analysis



Reduction to Reachability with Counters

H(L1) subset of H(L2)  
iff 

∏(H(L1)) subset of ∏(H(L2))

• Consider only k-bounded-length histories 
• Track histories of L1 using a finite number of counters 
• Use an arithmetic-based representation of  ∏(H(L2)) 
• Check that ∏(H(L2)) is invariant  

• => Dynamic and static analysis

How to get ∏(H(L)) ?



• Logic for expressing operation counting constraints

Operation counting formulas 

Presburger arithmetics with #(a, i, j) predicates 
where 

[ #(a, i, j) ](h) = |{o : I(o) = [i,j]  and  label(o) = a}| 
Number of occurrences of a in the interval [i,j]

• h |= F is polynomial time (for a fixed quantifier count)



Building operation counting formulas 

• For any k, a counting formula for ∏(H(L)) can be provided 
for common data structures (stack, queue, set,…) 

• Assume data independence => push’s have ≠ values

Violation of FIFO property (FV):
x1,x2,y1,y2. 

Match(x1, y1) & Match(x2,y2)  
BeforeK(x1,x2) & BeforeK(y2, y1) 

where 
Match(x,y) = IsPush(x) & IsPop(y) & SameVal(x,y) 

BeforeK(x,y) = \/i≤k (count(x,0,i) > 0) & count(y,0,i)=0 & count(x,i+1,k)=0) 
where  

count(x,i,j) = ∑i≤i’≤j’≤j  #(x,i’,j’)

9



Building operation counting formulas 

FIFO queue data structure:

Violation of FIFO property (FV):
x1,x2,y1,y2. Match(x1, y1) & Match(x2,y2) &  

BeforeK(x1,x2) & BeforeK(y2, y1)

Violation of Remove property (RV):

Violation of Empty property (EV):

x,y. Match(x, y) & BeforeK(y, x)

x,y,z. Match(x, z) & EmptyPop(y) &  
BeforeK(y, z) & BeforeK(y, z)

9

9

9



Experimental Results: Coverage

 1
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 10000

 100000
Histoires

Violations
Covered w/ k=4
Covered w/ k=3
Covered w/ k=2
Covered w/ k=1
Covered w/ k=0

• Data point: Counts in logarithmic scale over all executions (up to 5 preemptions) on 
Scal’s nonblocking bounded-reordering queue with ≤4 enqueue and ≤4 dequeue

• x-axis: increasing number of executions (1023-2359292)
• White: total number of unique histories over a given set of executions
• Black: violations detected by traditional linearizability checker (e.g., Line-up)

Comparison of violations covered with k ≤ 4



Experimental Results: Runtime Monitoring

 1

 10

 100

 1000
Linearization

Operation Counting

Comparison of runtime overhead  
between Linearization-based monitoring and Operation counting

• Data point: runtime on logarithmic scale, normalised on unmonitored execution time
• Scal’s nonblocking Michael-Scott queue, 10 enqueue and 10 dequeue operations.
• x-axis is ordered by increasing number of operations



Experimental Results: Static Analysis

Library Bug P k m n Time
Michael-Scott Queue B1 (head) 2x2 1 2 2 24.76s
Michael-Scott Queue B1 (tail) 3x1 1 2 3 45.44s
Treiber Stack B2 3x4 1 1 2 52.59s
Treiber Stack B3 (push) 2x2 1 1 2 24.46s
Treiber Stack B3 (pop) 2x2 1 1 2 15.16s
Elimination Stack B4 4x1 0 1 4 317.79s
Elimination Stack B5 3x1 1 1 4 222.04s
Elimination Stack B2 3x4 0 1 2 434.84s
Lock-coupling Set B6 1x2 0 2 2 11.27s
LFDS Queue B7 2x2 1 1 2 77.00s

• Static detection of injected refinement violations with CSeq & CBMC. 
• Program Pij with i and j invocations to the push and pop methods, explore n-round 

round-robin schedules with m loop iterations unrolled, with monitor for Ak.
• Bugs: (B1) non-atomic lock, (B2) ABA bug, (B3) non-atomic CAS operation, (B4) 

misplaced brace, (B5) forgotten assignment, (B6) misplaced



Focusing on Special Classes of Objects 
[B., Emmi, Enea, Hamza, ICALP 2015]

• Inductive definition of sequential objects (restricted 
language based on constrained rewrite rules) 

• Characterizing concurrent violations using a finite 
number of “bad patterns” 

• Defining finite-state automata recognising each of the 
“bad patterns” (using data independence assumption) 

• Reducing linearizability to checking the emptiness of the 
intersection with these automata.



Specifying queues and stacks

• u . v : Q  &  u : ENQ*  —>  Enq(x) . u . Deq(x) . v : Q 

• u . v : Q  &  no unmatched Enq in u  —>  u . Emp . v : Q

• u . v : S  &  no unmatched Push in u  —>  
Push(x) . u . Pop(x) . v : S 

• u . v : S  &  no unmatched Push in u  —>      
u . Emp . v : S

Queue

Stack



Order Violation

Enq(1)

Deq(1)Enq(2)

Deq(2)

Enq(1) < Enq(2)  &  Deq(2) < Deq(1)



Empty ViolationIntroduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

EMP

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0 q1 q2

q3

q4

⌃2 ⌃2 ⌃2

⌃2

⌃2

call Push(1)

ret Push(1) call EMP() ret EMP()

ret Push(1)call Pop(1)

14 / 17



Order Violation cont.Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

Push2 Pop2

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0q

i

q1 q2

q3

q4

⌃3 ⌃3 ⌃3 ⌃3

⌃3

⌃3

call Push(1)

call Push(2)·
ret Push(2) ret Push(1) call Pop(2) ret Pop(2)

ret Push(1)call Pop(1)

15 / 17



Automaton for Empty Violation
Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata
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Push1
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Push1

Pop1

Pop1
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q0 q1 q2

q3

q4
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⌃2

⌃2

call Push(1)

ret Push(1) call EMP() ret EMP()

ret Push(1)call Pop(1)

14 / 17



Automaton for Push-Pop Order Violation
Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

Push2 Pop2

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0q

i

q1 q2

q3

q4

⌃3 ⌃3 ⌃3 ⌃3

⌃3

⌃3

call Push(1)

call Push(2)·
ret Push(2) ret Push(1) call Pop(2) ret Pop(2)

ret Push(1)call Pop(1)

15 / 17



Linearizability to State Reachability

For each S in {Stack, Queue, Mutex, Register}, there is an automaton 
A(S) s.t. for every data independent concurrent object C, C is 
linearisable wrt S iff the intersection of H(C) wrt H(A(S)) is empty.

Thm:

Same complexity as state reachability



Conclusion/Future work

• Bounding concept based on the notion of interval-length 
• OR checking —> Reachability problem, using counting 
• Suitable bounding concept: low complexity, small bounds 
• Application in Dynamic and Static Analysis 
• => Automatic synthesis of “specification”

• Reduction to SR for a common concurrent objects 
• Reuse of existing verification technology 
• => Extension to other kind of objects, e.g., sets 
• => Abstractions / under-approximate analysis


